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Abstract. The generation and propagation of superluminal X-shaped pulses is investigated. We
demonstrate that such pulses can be modelled using a spectral approach that produces time-limited
Bessel beams. Special attention is given to calculating the velocities of the modelled pulsed Bessel
beams. The velocities of the peaks of the resulting pulses depend on the shapes of the spatio-
temporal distributions of the applied time-windows. The generation of pulsed Bessel beams is
investigated for various set-ups; including circular arrays, annular slits and axicons. It is shown
that superluminal pulsed Bessel beams undergo a delayed generation before they are launched;
henceforth, the peak of these pulses travels at speeds exceeding that of light.

1. Introduction

In recent years, several pulsed wave solutions that have peaks travelling at superluminal speeds
have been introduced. Examples of such solutions are the X-wave [1, 2], the Bessel X-pulse
[3–5] and the focused X-wave [6]. There have been suggestions that the existence of such
pulsed solutions may contradict the theory of special relativity [7–10]. Moreover, claims have
been made that the existence of such signals implies ‘a breakdown of the principle of relativity’
[10]. The aim of this work is to study the details of the generation of such pulsed fields and to
discuss their implication as far as special relativity is concerned.

All X-shaped superluminal solutions [1–6, 11–16] appearing in literature can be
synthesized as superpositions of Durnin’s Bessel beam solution [17–19]. The azimuthally
symmetric zero-order Bessel beam is given by

�(�r, t) = J0(χρ)e
−i(kzz−ω0t) (1)

where ω2
0 = χ2 + k2

z . The exact Bessel beams do not diffract because they require infinite
apertures to excite them. In practical situations, approximate Bessel beams are generated
using finite-size sources obtained by truncating the Bessel profile of the initial excitation of the
source [19–23]. Such approximate Bessel beams have finite diffraction-free ranges, beyond
which they spread out.

The first optical Bessel beam was generated by Durnin et al via the illumination of
an annular slit placed in the focal plane of a lens [19]. Durnin demonstrated that a finite
Bessel beam had a larger field depth compared with a Gaussian beam, even if their central
spots had equal radii. Other methods have been suggested to generate optical and acoustical
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Bessel beams. One of the methods for generating optical Bessel beams utilizes a point source
illumination of a Fabry–Perot interferometer [24, 25]. The aperture of a lens placed behind
the interferometer is adjusted so that it transmits only the first ring and blocks all other
rings. Consequently, the transmitted image becomes that of a zero-order Bessel function.
In addition, conical lenses (axicons) have been used to generate a superposition of equally
weighted monochromatic plane waves lying on a conical surface characterizing the spectral
structures of the generated Bessel beams [23, 26, 27]. Other groups have employed holographic
optical elements that introduce phase factors analogous to the linear phase delays contributed
by refractive axicons [28–33]. Beside the aforementioned optical schemes, there have been
successful designs of acoustical Bessel beam sources. The first acoustical Bessel beam
generator was reported by Hsu et al [34]. They constructed a three-ring narrow-band solid
PZT transducer. Applying Bessel shading Hsu et al used such a transducer to generate a
continuous-wave Bessel beam. A second acoustical source was developed by Lu and Greenleaf
who used an improved acoustical transducer [35, 36]. They constructed a wideband ten-ring
annular transducer from a PZT ceramic/polymer composite. The same source has been used
to generate ultrasonic monochromatic Bessel beams, as well as pulsed fields such as the X-
wave [2]. The latter is a broadband pulse generated when the excitation of each array element
has an independent temporal profile. The source built by Lu and Greenleaf has been used to
investigate the application of ultrasonic Bessel beams and X-waves in medicine; e.g. high-
resolution imaging [35–40] and using the Doppler effect for estimating the velocity of blood
flow [41].

Studies of ultra-wideband localized wave (LW) solutions to the homogenous wave
equation have developed in parallel to investigations of Durnin’s monochromatic Bessel beams.
Examples of the former include the focus wave modes [42–45], the modified power spectrum
pulse [44–50], the X-wave [1, 2], the Bessel X-pulse [3–5] and the focus X-wave [6]. These LW
solutions are superpositions of polychromatic Bessel beams. The time dependence of the initial
excitations of the different sections of their sources is mirrored in their spatio-temporal Fourier
spectra. LW pulses exhibit characteristic spatio-temporal spectral couplings that depend on
the spatio-temporal distribution of their excitations [51–54]. Therefore, one may perceive
LW fields as Bessel beams that are time-limited using intricate spatio-temporal windowing
functions. Furthermore, the differences between various LW solutions might be attributed
to the nature of the spatio-temporal windowing of Bessel beam sources. A monochromatic
zero-order Bessel beam is a superposition of equally weighted monochromatic plane waves
having propagation vectors lying on a conical surface [11, 12, 17–19]. On the other hand, a
pulsed Bessel beam (or a LW pulse) has a large frequency bandwidth and both its temporal and
spatial spectral components are designed to produce a highly directional time-limited pulse
[51–54]. For example, the X-waves are weighted superpositions over polychromatic Bessel
beams restricted to a single conical surface [12, 13]. On the other hand, the focus wave modes
are composed of polychromatic Bessel beams acquiring different spectral amplitudes over an
infinite number of uniaxial conical surfaces [55]. One should also note that not all LW pulses
are superluminal. Only, LW solutions deduced using the superluminal boost superposition
have peaks that propagate at superluminal velocities [6].

It is an established theoretical result that the velocity of the peak of an optical X-shaped LW
(or a pulsed Bessel beam) can be superluminal [1–16]. Furthermore, it has been demonstrated
experimentally that the peak of an acoustic X-wave generated using the circular array of Lu
and Greenleaf travels at a supersonic speed [8]. Based on an extrapolation of the results of
the acoustical experiment to the case of optical pulses, it has been argued that the generation
of superluminal X-waves would entail a violation of the theory of special relativity [8]. This
argument needs to be examined more carefully in view of the optical X-shaped localized
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waves generated in an experiment performed by Saari and Reivelt [4] and the observation of
the superluminal behaviour of microwave X-shaped LWs reported by Mugnai et al [56]. The
main aim of this work is to investigate the prospect of superluminal signalling using pulsed
Bessel beams. We provide a detailed analysis of the fields produced by different sources. The
results of such calculations serve two goals. They provide preliminary estimates of what one
should expect to observe in a real experiment. In addition, they clarify certain aspects related
to the nature of the superluminal propagation of X-shaped localized pulses generated using
various schemes.

The plan of this work is to investigate the various set-ups that can be used for generating
pulsed Bessel beams. In section 2, we consider the case of pulsed Bessel beams generated from
a circular aperture. In practical situations, the aperture would be built from discrete circular
elements forming an array similar to the ultrasonic transducer built by Lu and Greenleaf. We
demonstrate that the time-switching profile of the initial excitation of the aperture can affect the
velocity of the peak of the generated pulses. From this analysis, we determine the conditions
for producing either subluminal or superluminal pulsed Bessel beams. Generating pulsed
Bessel beams using a uniform illumination of an annular slit is considered in section 3. In
this case, we show that the superluminal speed of the peak of the pulsed Bessel beam is a
consequence of a ‘delayed generation’ followed by a ‘catching up’ behaviour. In section 4,
the case of generating a pulsed Bessel beam from an axicon is considered. In section 5, we
provide our concluding remarks.

2. Pulsed Bessel beams generated by circular apertures

In this section, we investigate the case of pulsed Bessel beams generated from flat circular
apertures. The analysis used here is based on a spectral synthesis of the driving function
and is employed to highlight several essential features of pulsed Bessel beams. We introduce
several spatio-temporal initial distributions of the driving functions of flat circular apertures.
In practical situations, these initial distributions can be either time-limited, spatially shaded
illuminations of the source plane, or initial current distributions driving an arrangement of
discrete source elements. It should be noted that the first type has been the basis for recently
reported optical and microwave sources [3–5, 56], while the second type has been used in
generating acoustical pulsed Bessel beams [2, 44, 45]. An electromagnetic source of the second
type, specifically a physical antenna driven by currents fed to its elements has not yet been
realized. To set up a general framework to be used in later sections, we start by calculating the
monochromatic Bessel beam radiated by an infinite source. This is followed by a discussion
of using Fourier synthesis to time limit the initial excitation of a Bessel beam. We demonstrate
that this can be done in diverse fashions and illustrate the differences among them. It will be
shown that the way the initial Bessel beam excitation is time limited is crucial for determining
the velocity of the peak of the generated pulse.

2.1. Monochromatic Bessel beams generated by an infinite source

A solution to the scalar wave equation can be written as a Fourier–Hankel superposition;
specifically,

�(ρ, z, t) = (1/2π)
∫ +∞

−∞
dω

∫ ∞

0
dχ χJ0(χρ)e

−iz
√

(ω/c)2−χ2
eiωt�F(χ, ω). (2)
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Classes of wave solutions that are superpositions of Bessel beams are obtained by using the
following spectrum:

�F(χ, ω) = g(χ, ω)δ(χ − (ω/c) sin ξ). (3)

The specific choice

g(χ, ω) = (2π/χ)δ(ω − ω0) (4)

yields the monochromatic Bessel beam solution [17]

�(�r, t) = J0((ω0/c)ρ sin ξ)e−i(ω0/c)(z cos ξ−ct). (5)

Here, the parameter ξ is the axicon angle. The above result is the same as that given in
equation (1) after using the transformation χ = (ω0/c) sin ξ and kz = (ω0/c) cos ξ . Note that
the Bessel beam has a phase dependence that propagates at the superluminal speed c/cos ξ .
The representation given in equation (2) is a combination of monochromatic (ω = ω0)
plane waves propagating along tilted directions forming a circular conical surface defined
by an apex angle ξ [12, 13, 17–19]. Other choices of g(χ, ω) lead to a variety of LW fields
[6, 48, 49, 54, 57].

Before examining the behaviour of pulsed Bessel beams radiated from finite apertures, we
first demonstrate the invariance of the continuous Bessel beams radiated from planar sources
having infinite extension. The field generated by an infinite source situated at the z = 0 plane
is calculated using the Rayleigh–Sommerfeld formula [58]

�(ρ, z, t) = (1/2π)
∫ 2π

0
dφ′

∫ ∞

0
dρ ′ρ ′(1/R)

{
[−∂�(ρ ′, z′, t ′)/∂z′]z′=0

}
t ′=t−R/c (6)

whereR =
√
ρ ′2 + ρ2 − 2ρρ ′ cosφ′ + z2. The primed coordinates refer to points on the source

plane and unprimed ones are related to observation points at z > 0. Assume that the initial
excitation �(ρ ′, z′ = 0, t ′) is the Bessel beam given in equation (5), hence,

�(ρ, z, t) = iω0

2πc

∫ 2π

0
dφ′

∫ ∞

0
dρ ′ ρ ′ cos ξ J0((ω0/c)ρ

′ sin ξ) eiω0t
e−i(ω0/c)R

R
. (7)

To evaluate this integration, we use the formula

e−i(ω0/c)R

R
= 1

π

∫ ∞

0
dλ λ

∫ +∞

−∞
dkz J0(λρ

∗)
e−ikzz

k2
z − ((ω0/c)2 − λ2)

(8)

where ρ∗ =
√
ρ2 + ρ ′2 − 2ρρ ′ cosφ′. From equations (7) and (8), we have

�(ρ, z, t) = iω0

2πc

∫ 2π

0
dφ′

∫ ∞

0
dρ ′ ρ ′ cos ξJ0((ω0/c)ρ

′ sin ξ)

×eiω0t
1

π

∫ ∞

0
dλ λ

∫ +∞

−∞
dkz J0(λρ

∗)
e−ikzz

k2
z − ((ω0/c)2 − λ2)

. (9)

Following the steps described in [14, 55], we can use the two identities∫ 2π

0
dφ′ J0(λ

√
ρ2 + ρ ′2 − 2ρρ ′ cosφ′2) = 2πJ0(λρ)J0(λρ

′)

1

π

∫ +∞

−∞
dkz

eikZz

k2
z − ((ω0/c)2 − λ2)

= −i
e−iz

√
(ω0/c)2−λ2

√
(ω0/c)2 − λ2
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for z � 0, and the orthogonality of the Bessel functions [59] to obtain

�(ρ, z, t) = J0((ω0/c)ρ sin ξ) eiω0te−i(ω0/c) cos ξz.

This is the initial illumination used to excite the infinite aperture. As expected, an infinite
aperture generates a non-diffracting Bessel beam.

For an initial excitation composed of a superposition of Bessel beams (cf equation (2)),
the radiated field is also invariant with distance. Specifically, the field

�(ρ, z, t) = (1/2π)
∫ +∞

−∞
dω

∫ ∞

0
dχ χJ0(χρ)e

−iz
√

(ω/c)2−χ2
eiωt�F(χ, ω) (10)

for z > 0, is diffraction free if generated from an infinite aperture. This well known result has
been deduced previously using different methods [6, 12–16, 49, 55]. However, the derivation
of this simple result has been repeated in this section because it provides the basis for a uniform
approach to the modelling of time-limited Bessel beams.

2.2. Pulsed Bessel beams generated by finite-time sources

2.2.1. Spatially uniform Gaussian time window. A pulsed Bessel beam can be generated
using different spatio-temporal excitation schemes. The simplest method is to time-window
the initial beam excitation uniformly across an infinite source plane. In particular, we use a
Gaussian window to time limit the initial field, namely,

�p(ρ, z = 0, t) = J0((ω0/c) sin ξρ) eiω0te−t2/4T 2
. (11)

The spectrum corresponding to such an illumination wave field is calculated using a Hankel–
Fourier transform; specifically,

�
(1)
F (χ, ω) =

∫ ∞

0
dρ ρ

∫ +∞

−∞
dt J0(χρ)J0((ω0/c) sin ξρ) eiω0te−t2/4T 2

e−iωt . (12)

The integrations over ρ and t yield the following spectrum:

�
(1)
F (χ, ω) = (

2T
√
π/χ

)
δ(χ − (ω0/c) sin ξ)e−T 2(ω−ω0)

2
. (13)

Following the analysis presented in section 2.1 for an infinite aperture, the Rayleigh–
Sommerfeld formula [58] gives the following polychromatic field:

�p(ρ, z, t) = (1/2π)
∫ +∞

−∞
dω

∫ ∞

0
dχ χJ0(xρ)e

−iz
√

(ω/c)2−x2

×eiωt
(
2T

√
π/χ

)
δ(x − (ω0/c) sin ξ)e−T 2(ω−ω0)

2
(14)

for z > 0. The integration over χ yields

�p(ρ, z, t) = (
T/

√
π

) ∫ +∞

−∞
dω J0((ω0/c)ρ sin ξ)e−iz

√
(ω/c)2−(ω0/c)2 sin2 ξeiωte−T 2(ω−ω0)

2
.

(15)

This polychromatic field retains its lateral Bessel profile but is time-limited along the direction
of propagation. Because of the uniform time-windowing of the whole aperture plane, this
pulsed Bessel beam does not acquire the X-shape characteristic of the X-waves [1] or the
Bessel X-pulses [3]. Practically, such a pulse can be generated by a circular array using Bessel
shading. The circular array manufactured by Lu and Greenleaf will produce a field similar
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Figure 1. Axial time dependence of the envelope of a pulsed Bessel beam generated by applying
a Gaussian temporal window uniformly over the source plane for (ω0/c) = 4 × 106 m−1,
cT = 0.0006 m and ξ = 2◦. The pulses are observed at (a) ct0 = 0.1 m, (b) ct0 = 1 m, (c)
ct0 = 3 m and (d) ct0 = 5 m.

to that given in equation (14) when all the array elements are pulsed using the same time-
limiting function [8]. This excitation scheme is different from the successive excitation of
the various array elements using different time sequences [2]. The uniformly pulsed Bessel
beam has a peak travelling with a subluminal velocity v < c. This can be seen from figure 1,
where the pulse given in equation (14) is plotted along the axis of propagation (ρ = 0) for
(ω0/c) = 4 × 106 m−1, cT = 0.0006 m and ξ = 2◦. At observation times ct0 = 0.1, 1, 3
and 5 m, the peak of the pulse occurs at zmax < ct0. The increase in the separation ct0 − zmax

indicates that the speed of the peak of the pulse is subluminal. This behaviour should be
contrasted with the fact that the peak of the X-wave travels with a superluminal velocity v > c

[1, 6, 9]. The difference in the behaviour of these two pulsed Bessel beams is due to the nature
of the temporal switching of the initial excitation.
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2.2.2. Spatio-temporal X-shaped time window (I). In contrast to the uniform temporal
switching of Bessel beams discussed in the preceding subsection, one can change the spatio-
temporal distribution of the initial excitation. Consequently, different sections of the source
could be pulsed at different times. From previous investigations, we know that smoothing the
delta functions in the spectrum of a LW pulse corresponds to applying a time-window to the
initial field excitation [6, 14–16, 51–54]. We use this property to describe an alternative method
to produce pulsed Bessel beams. Starting with the Fourier spectrum of the monochromatic
Bessel beam given in equations (3) and (4), we replace δ(ω − ω0) by its limiting Gaussian
function δ̂(ω − ω0), namely,

δ̂(ω − ω0) = (
T/

√
π

)
e−T 2(ω−ω0)

2
. (16)

The corresponding Fourier spectrum is

�
(2)
F (χ, ω) = (

2T
√
π/χ

)
e−T 2(ω−ω0)

2
δ(χ − (ω/c) sin ξ). (17)

Note that this spectrum hasχ ∝ (ω/c) instead of havingχ ∝ (ω0/c) as in the spectrum derived
in equation (13). The spectrum given in equation (17) exhibits the χ–ω coupling characteristic
of LWs, while the one given in equation (13) does not. This χ–ω coupling reflects the intricate
spatio-temporal character of the excitation wave fields of LWs. In the limit T → ∞, both
spectra given in equations (13) and (17) lead to the monochromatic Bessel beam given in
equation (1).

At this point, we determine explicitly the shape of the excitation time window
corresponding to the spectrum given in equation (17). This is done by evaluating the Hankel–
Fourier transform, namely,

�p(ρ, z = 0, t) = (1/2π)
∫ +∞

−∞
dω

∫ ∞

0
dχ χJ0(χρ)

×eiωt
(
2T

√
π/χ

)
e−T 2(ω−ω0)

2
δ(χ − (ω/c) sin ξ). (18)

The integration over χ yields

�p(ρ, z = 0, t) = (
T/

√
π

) ∫ +∞

−∞
dω J0((ω/c)ρ sin ξ) eiωte−T 2(ω−ω0)

2
. (19)

This integration over ω cannot be carried out to obtain a closed-form expression. However,
one can have an idea of the shape of the time envelope of the initial excitation by evaluating
the integration at specific ρ values. For example, at ρ = 0 the integration over ω yields the
following initial illumination:

�p(ρ = 0, z = 0, t) = e−(t2/4T 2)eiω0t . (20)

This is the same as the initial wave field given in equation (11) atρ = 0. Forρ = 0, the resulting
time-windows would be different. This can be seen for ρ = 0 by rewriting equation (19) as

�p(ρ, z = 0, t) = (cT /2π3/2)
∫ 2π

0
dφ

∫ +∞

−∞
dk e−ikρ sin ξ cos(φ−α)eikcte−c2T 2(k−k0)

2
(21)

where k = (ω/c). The integration over k gives

�p(ρ, z = 0, t) = (1/2π)
∫ 2π

0
dφ e−(ρ sin ξ cos(φ−α)−ct)2/4(cT 2)e−ik0(ρ sin ξ cos(φ−α)−ct). (22)

The integration given in equation (22) is evaluated numerically using the following parameter
values: (ω0/c) = 4 × 106 m−1, cT = 0.0006 m and ξ = 2◦. For cT � 1/(ω0/c), the initial
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Figure 2. Surface plots of the initial excitation of a pulsed Bessel beams having an axicon angle
ξ = 2◦ and characterized by the following parameter values: (a) (ω0/c) = 4 × 106 m−1 and
cT = 0.0006 m and; for which cT � 1/(ω0/c). (b) (ω0/c) = 1×105 m−1 and cT = 6×10−5 m;
for which cT ≈ 1/(ω0/c).

excitation resembles that of a Bessel beam time-limited using a uniform Gaussian window.
This is illustrated in figure 2(a), where a surface plot of the initial excitation is displayed for
the chosen parameter values. On the other hand, the surface plot displayed in figure 2(b) for
(ω0/c) = 1 × 105 m−1, cT = 6 × 10−5 m and ξ = 2◦ shows that for cT ≈ 1/(ω0/c) the
excitation of the aperture acquires the X-armed shape characterizing the X-wave and the Bessel
X-pulse [1, 3]. One should note that the central pulse of an X-wave field having cT � 1/(ω0/c)

contains a large number of oscillations, while for cT ≈ 1/(ω0/c) the number of oscillation is
small. For cT � 1/(ω0/c), the excitation given in equation (22) retains many properties of
the X-shaped LWs although it looks like pulses produced by the uniform windowing scheme
(cf equation (11)). Most notably, the peaks of the generated pulses propagate at superluminal
instead of subluminal speeds.

2.2.3. Spatio-temporal X-shaped time window (II). Another finite-time window yielding a
spectrum that reduces to equation (11) as T → ∞ is the one used by Saari et al [3]. Their
time-limiting function results from the use of a Fourier spectrum of the following form:

�
(3)
F (χ, ω) = (

2T
√
π/χ

)(√
ω/ω0

)
e−T 2(ω−ω0)

2
δ(χ − (ω/c) sin ξ). (23)

This spectrum has the advantage that it does not contain a non-oscillatory component(
�
(3)
F (χ, ω) = 0 at ω = 0

)
. For such a spectrum, the radiated field can be evaluated using the

following superposition:

�p(ρ, z, t) = (1/2π)
∫ +∞

−∞
dω

∫ ∞

0
dχ χJ0(χρ)e

−iz
√

(ω/c)−χ2
eiωt

(
2T

√
π/χ

)

×(
√
ω/ω0)e

−T 2(ω−ω0)
2
δ(χ − (ω/c) sin ξ).

Carrying out the integration over χ and using k = (ω/c), we obtain

�p(ρ, z, t) = (cT /
√
π)

∫ +∞

−∞
dk (

√
k/k0)J0(kρ sin ξ)e+k(2c2T 2k0−iu)e−c2T 2k2

e−c2T 2k2
0 (24)
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where u = z cos ξ − ct and k0 = (ω0/c). Making use of the large argument approximation
I0(x)

∼= ex/
√

2πx and following the same procedure described by Saari [3], we arrive at the
following approximate result:

�p(ρ, z, t)
∼= (√

1 − i(u/2k0c2T 2)
)
e−ik0ue−(u2+ρ2 sin2 ξ)/4c2T 2

J0((k0 − i(u/2c2T 2))ρ sin ξ).

This wavefield exhibits X-shaped arms similar to those of the X-wave. This can be seen
for (u/(2k0c

2T 2)) � 1; under this restriction, the above expression for �p(ρ, z, t) can be
approximated as follows:

�p(ρ, z, t)
∼= (√−iu/2k0c2T 2

)
e−ik0ue−(u2+ρ2 sin2 ξ)/4c2T 2

I0(uρ sin ξ/2c2T 2).

The approximation I0(x)
∼= ex/

√
2πx gives, finally,

�p(ρ, z, t)
∼= (√−i/2πk0ρ sin ξ

)
e−ik0ue−(u−ρ sin ξ)2/4c2T 2

. (25)

For distances u � 2k0c
2T 2, the radiated field is exponentially small except for u = ρ sin ξ .

This relation between the values of u and ρ defines the X-shaped arms of the field of the Bessel
X-pulse. The approximate expression given in equation (25) represents a pulse having a peak
moving at a superluminal speed c/cos ξ . The same superluminal propagation is achieved by
other pulses deduced using different time windowing functions; for example, X-waves follow
from using the initial time window 1/(a − ict) instead of the Gaussian window.

2.3. Pulsed Bessel beams generated by a circular array

In the preceding subsection, we considered three finite-time excitations of Bessel beams
applied to infinite apertures. For a finite-size source having diameter D, the deduced results
are essentially valid over a finite distance in the near-field range characterized by the limit
zd = D/(2 tan ξ). The decay of pulsed Bessel beams and X-shaped LWs due to the finiteness
of the size of the source has been considered in previous publications [14–16, 51–54, 60, 61].
However, we provide an expression for the field radiated by an array of N annular rings when
the field given in equation (24) is used as an initial excitation. Specifically,

�p(ρ = 0, z, t) =
N∑
n=1

icTρ ′
n(ρ

′√
π(ρ ′2

n + z2)

∫ +∞

−∞
dk k cos ξ(

√
k/k0)J0(kρ

′
n sin ξ)

×e−c2T 2(k−k0)
2
e−ik

√
ρ ′2
n +z2

eikct (26)

where(ρ ′ is the separation between the array elements, ρ ′
n = n(ρ ′ gives the radial position of

each ring and the finite radius of source is given by (D/2) = N(ρ ′. This expression follows
from applying the Rayleigh–Sommerfeld formula (6) to a discretized circular aperture. The
on-axis amplitude of the pulse radiated from a discretized aperture consisting of N = 500
elements is shown in figure 3 at observation times ct0 = 0.3, 0.8, 1.3 and 1.8 m. The radiating
source has a radius (D/2) = 0.05 m, central angular frequency (ω0/c) = 2 × 104 m−1, pulse
duration cT = 0.006 m and axicon angle ξ = 4◦. One should note that the centre of the pulse
occurs at distances zmax > ct0. The increase in the separation (zmax − ct0) as the pulse travels
away from the source indicates that the speed of the peak of the pulse is superluminal. The
onset of the fast decay of the peak amplitude occurs at zd = D/(2 tan ξ) = 0.715 m, as can
be seen from the large drop in the field amplitude between ct0 = 0.8 and 1.3 m illustrated in
figures 3(b) and (c).
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Figure 3. Axial envelope of a pulsed Bessel beam radiated from a discrete aperture consisting
of N = 500 elements and having (D/2) = 0.05 m, (ω0/c) = 2 × 104 m−1, cT = 0.006 m
and ξ = 4◦. The pulse is plotted at observation times: (a) ct0 = 0.3 m; (b) ct0 = 0.8 m; (c)
ct0 = 1.3 m; and (d) ct0 = 1.8 m.

3. Pulsed Bessel beams generated by an annular slit

In the preceding section, we have shown that X-shaped waves can be generated from a flat
aperture given that various sections of the aperture are excited using different time sequences. In
practical situations, this can be achieved using circular arrays having independently addressable
discrete elements [2]. It has been established, however, that Bessel beams can be generated
using other methods [23–33]. In this section, we consider the generation of pulsed Bessel beams
by applying a uniform pulsed illumination to a thin annular slit. This method is viable because
the Fraunhofer diffraction image of an annular slit has a Bessel transverse radial dependence.
An annular slit having a finite width, thus, produces a finite-energy approximation of the Bessel
beam.
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3.1. Monochromatic Bessel beams generated by an annular slit

The field generated from a thin annular slit can be calculated using the Rayleigh–Sommerfeld
expression given in equation (6) with (D1/2) < ρ ′ < (D2/2). Along such vein, consider the
uniform illumination

�(ρ ′, z′, t ′) = �0e−ik0(z
′−ct ′)

where k0 = (ω0/c). If the annular slit is opened in a screen situated at z = 0, the derivative
with respect to the normal to the aperture plane is given by

(∂�(ρ ′, z′, t ′)/∂z′)
∣∣
z′=0 = −ik0�0eiω0te−i(ω0/c)R.

The Rayleigh–Sommerfeld formula gives the generated field for z > 0. Using equation (8),
we obtain

�(ρ, z, t) = (iω0�0/2πc)
∫ 2π

0
dφ′

∫ (D2/2)

(D1/2)
dρ ′ ρ ′eiω0t (1/π)

×
∫ ∞

0
dλ λ

∫ +∞

−∞
dkz J0(λρ

∗)
e−ikzz

k2
z − ((ω0/c)2 − λ2)

.

The integration over φ′ and kz yields

�(ρ, z, t) = (iω0�0/2πc)
∫ (D2/2)

(D1/2)
dρ ′ ρ ′eiω0t

×
∫ ∞

0
dλ λ(−2π i)J0(λρ)J0(λρ

′)
e−iz

√
(ω0/c)2−λ2

√
(ω0/c)2 − λ2

. (27)

The integration over ρ ′in equation (27) is carried out, yielding

�(ρ, z, t) = (ω0�0/c)

∫ ∞

0
dλ

{
(D2/2)J1(λD2/2)− (D1/2)J1(λD1/2)

}

×J0(λρ)
e−iz

√
(ω0/c)2−λ2

√
(ω0/c)2 − λ2

eiω0t . (28)

Introducing the new variable φ = φR + iφI defined by the transformation λ = k0 sin φ, we
obtain [55]

�(ρ, z, t) = (ω0�0/c)

∫ (π/2)

0
dφR

{
(D2/2)J1(k0 sin φR(D2/2))

−(D1/2)J1(k0 sin φR(D1/2))
}
J0(k0ρ sin φR)e

−ik0(z cosφR−ct)

+(ω0�0/c)

∫ ∞

0
dφI

{
(D2/2)J1(k0 cosh φI (D2/2))

−(D1/2)J0(k0ρ cosh φI (D1/2))
}
J0(k0ρ cosh φI )e

−ik0z sinh φI eiω0t . (29)

The first integration on the right-hand side corresponds to the radiated field. We can have an
idea of how the result of the integration behaves using the stationary phase method. This is
particularly true for optical applications where the frequency of the illumination field (ω0/c) ≈
107 m is very large. The two terms J1((ω0/c) sin φR(D1/2)) and J1((ω0/c) sin φR(D2/2)) can
be approximated by making use of the corresponding large-argument asymptotic expressions
[59]. The integrand, thus, contains highly oscillatory terms with an exponential dependence
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Figure 4. Stationary angle φ(s)R = arctan(D/2z) suspended by the annular ring on an observation
point lying on the axis of propagation.

 

 

 

 

Figure 5. Decay of monochromatic Bessel beams generated using an annular slit for the two
frequencies (ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 × 105 m−1. The inner and outer radii of the
slit are chosen to equal (D1/2) = 0.04 m and (D2/2) = 0.041 m. The decay in the amplitude
versus the distance from the source is plotted using (a) normal and (b) log–log scales.

exp(±i(ω0/c) sin φR(Dj/2)), where j = 1 or 2. The stationary phase method indicates that
the main contribution to such highly oscillatory integration occurs when

(∂/∂φR)((ω0/c)z cosφR ± (ω0/c)(Dj/2) sin φR) = 0

for which

tan φ(s)R = ±(Dj/2z)

where j = 1 or 2. For a narrow slit D1 ≈ D2 = D, the stationary angle φ(s)R = arctan(D/2z)
corresponds to the angle suspended by the annular ring on an observation point lying on the axis
of propagation as shown in figure 4. Thus, unlike the planar excitation discussed in section 2,
the angle φ(s)R (equivalent to the axicon angle ξ ) depends on the observation point and is not a
constant parameter.

Along the axis of propagation, an exact expression for the generated field can be derived
by direct integration of equation (27)

�(ρ = 0, z, t) = i(ω0�0/2πc)
∫ 2π

0
dφ′

∫ (D2/2)

(D1/2)
dρ ′ρ ′eiω0t

e−i(ω0/c)
√

ρ ′2+z2

√
ρ ′2 + z2

.
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The integration over φ′ and ρ ′ gives

�(ρ = 0, z, t) = −�0
(
e−i(ω0/c)(

√
(D2/2)2+z2−ct) − e−i(ω0/c)(

√
(D1/2)2+z−ct)) (30)

which is the difference between two outgoing plane waves emerging from the edges at
(D1/2) and (D2/2) [62]. The decay behaviour of such a field is shown in figure 5 for
(ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 × 105 m−1. For both frequencies, the inner and outer
radii of the slit are chosen to equal (D1/2) = 0.04 m and (D2/2) = 0.041 m, respectively.
Figure 5(a) illustrates the fast decay of the field corresponding to (ω0/c) = 1 × 105 m−1

due of its shorter Rayleigh diffraction limit. In figure 5(b), a log–log plot of the amplitude
|�(ρ = 0, z, t)| versus the distance z shows that the fields entering the far-field range exhibit
the typical (1/z) decay.

3.2. Pulsed Bessel beams generated by an annular slit

Consider the case of a pulsed illumination of the annular slit. We assume that the time-limited
initial illumination is given as follows:

�i(ρ, z = 0, t) = �0

∫ ∞

0
dω (ω/ω0)

(
T/

√
π

)
e−(ω−ω0)

2T 2
eiωte−i(ω/c)z

∣∣
z=0. (31)

Hence, we are dealing with the same problem discussed in the preceding section. The only
difference is that the result obtained for a monochromatic illumination has to be integrated over
the Gaussian spectrum chosen in equation (31). Note that the spectrum includes an (ω/ω0)

term to ensure that non-oscillatory terms do not contribute to the spectrum of the generated
wave. Using equation (28), the pulse generated by the annular slit is written as

�p(ρ, z, t) = (�0/c)

∫ ∞

0
dω

∫ ∞

0
dχ

(
ω2T/ω0

√
π

)
e−(ω−ω0)

2T 2
J0(χρ)

×{
(D2/2)J1(χ(D2/2))− (D1/2)J1(χD1/2)

} e−iz
√

(ω/c)2−χ2

√
(ω/c)2 − χ2

eiωt . (32)

Along the axis of propagation, the amplitude of the monochromatic Bessel beam given in
equation (30) is used to derive a closed-form expression for the amplitude of the radiated
pulse, namely,

�p(ρ = 0, z, t) = −�0

∫ ∞

0
dω (ω/ω0)

(
T/

√
π

)
e−(ω−ω0)

2T 2{
e−i(ω/c)(

√
(D2/2)2+z2−ct)

−e−i(ω/c)(
√

(D1/2)2+z2−ct)}. (33)

This expression is the difference between two integrations representing the contributions from
the two edges of the slit. For large ω0 values, we can extend the limits of the above integration
to −∞ → +∞. The identity (3.462.6) in [63] is then used to evaluate the integration over ω
giving the following field amplitude along the axis of propagation:

�p(ρ = 0, z, t) = −�0(1/(ω0T )
2)

{
(ω0T )

2 − i(ω0/2c)
(√

(D2/2)2 + z2 − ct
)}

×e−(
√

(D2/2)2+z2−ct)2/4c2T 2
e−i(ω0/c)(

√
(D2/2)2+z2−ct)

+�0(1/(ω0T )
2)

{
(ω0T )

2 − i(ω0/2c)
(√

(D1/2)2 + z2 − ct
)}

×e−(
√

(D1/2)2+z2−ct)2/4c2T 2
e−i(ω0/c)(

√
(D1/2)2+z2−ct). (34)
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Figure 6. Axial time envelope of a pulsed Bessel beam generated by an annular slit plotted for
(ω0/c) = 4 × 106 m−1, cT = 0.0006 m, (D1/2) = 0.04 m and (D2/2) = 0.041 m. The pulse is
displayed at observation times: (a) ct0 = 0.4; (b) ct0 = 1.6 m; (c) ct0 = 2.8 m; and (d) ct0 = 4 m.

This pulse consists of two terms each having a pulsed envelope with a centre moving with
speed

z(dz/dt)√
(D/2)2 + z2

= c

or

vg = dz

dt
= c

√
(D/2)2 + z2

z
.

The group velocity is evaluated using d
(√

(D/2)2 + z2 − ct
)
/dt = 0. The speed of the centre

of the generated pulse is superluminal. However, the velocity decreases as the pulse travels
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Figure 7. Same as in figure 6 but the axial time envelope of the pulsed Bessel beam is plotted for
(ω0/c) = 1 × 105 m−1 and cT = 6 × 10−5 m.

further. This effect is due to a ‘delayed launching’ effect. The pulse launched at ct = (D/2)

takes a time equal to
((√

z2
0 + (D/2)2 − (D/2)

)
/c

)
< (z0/c) to reach a distance z0. Thus,

the pulse appears to have travelled at a velocity v > c. The same conclusion is reached
when we consider the time evolution of the envelope of the pulse plotted in figure 6 for
(ω0/c) = 4 × 106 m−1, cT = 0.0006 m, (D1/2) = 0.04 m and (D2/2) = 0.041 m. It
is clear that the peak of the pulse plotted at ct0 = 0.4, 1.6, 2.8 and 4 m moves at a speed
larger than c. To clarify this point, we have plotted in figure 8 the positions of the peak of
the pulse at different observation times. The negative sign of zmax − ct0 indicates that the
peak of a pulsed Bessel beam is lagging behind the position z0 = ct0 defining the peak of
a pulse travelling at the speed of light. This means that, globally, the peak of the pulsed
Bessel beam will not overtake that of a pulse travelling at the speed of light. However,
locally, a pulsed Bessel Beam travels at a superluminal velocity in the near field of the
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Figure 8. Positions of the peaks of the pulsed
Bessel beams generated by an annular slit at
different observation times. The positions of
the peaks are plotted for the two frequencies
(ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 ×
105 m−1.

aperture. This can be deduced from the slope of the curve given in figure 8. The larger
slopes indicate that the velocity of the peak of the field is much larger than c. As the curve
levels up, the velocity of the pulse as it traverses a distance between any two successive
points approaches c. In the far-field range, the velocity of the peak of the pulsed Bessel
beam becomes equal to the speed of light. Henceforth, the position of the peak is located
at z0 = ct0. One could argue that the superluminal advancement in the position of the
peak of the pulse shown in figure 6 is slight in comparison to the axial width of the pulse
itself. Therefore, the observability of such effect would be difficult. In figure 7, we plot
the pulsed Bessel beams generated for (ω0/c) = 1 × 105 m−1 and cT = 0.000 06 m.
This X-shaped pulse has a much shorter axial width. Therefore, the observability of the
superluminal propagation of this pulse is enhanced in comparison to the case illustrated in
figure 6. One should note, however, that the positions of the peak of the pulse at different
times are comparable to the case of a pulse having a longer axial width. This can be seen by
comparing the two curves in figure 8 showing the positions of the peaks of the two pulsed
Bessel beams.

4. Pulsed Bessel beams generated by axicons

In this section, we investigate the possibility of using an axicon to create a superluminal X-
shaped pulse. An axicon is a conical lens that contributes to the emerging field components
a relative phase delay having a linear dependence on the radial coordinate ρ ′. Such a conical
lens will be referred to as a refractive axicon. In contrast, a diffractive axicon is a holographic
element designed to introduce a linear phase delay using a circular grating. We study the two
types of optical elements and demonstrate that the refractive axicon produces superluminal
X-shaped pulses. The diffractive axicon produces pulses that initially propagate at subluminal
velocities near the source. As the latter travel further away from the source, their speeds
become superluminal.
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Figure 9. Decay of monochromatic Bessel beams generated using an axicon for the two frequencies
(ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 × 105 m−1. The radius of the axicon is equals
(D/2) = 0.05 m and γ = 28. The decay in the amplitude versus the distance is displayed
using (a) normal and (b) log–log scales.

4.1. Monochromatic Bessel beam generated by axicons

Consider a continuous-wave monochromatic illumination of an axicon. For high frequencies,
the influence of an axicon can be approximated by a phase factor having a linear dependence on
ρ ′. Specifically, the generated field resulting from a monochromatic plane wave illumination
of an axicon is given as

�(ρ, z, t) = −(iω0�0/2πc)
∫ (D/2)

0
dρ ′ ρ ′eiω0t

∫ ∞

0
dλ λ(2π i)J0(λρ)J0(λρ

′)

× e−iz
√

(ω0/c)2−λ2

√
(ω0/c)2 − λ2

e+i(ω0/c)(ρ
′/γ ). (35)

The parameter γ is related to the axicon angle ξ and the refractive index n through the
relationship (1/γ ) = (n−1) tan ξ [26, 29]. The above integration is deduced using a procedure
similar to that leading to equation (27). Along the axis of propagation the generated field
reduces to

�(ρ = 0, z, t) = −(iω0�0/2πc)
∫ (D/2)

0
dρ ′ ρ ′eiω0t

∫ ∞

0
dλ λ(2π i)J0(λρ

′)

× e−iz
√

(ω0/c)2−λ2

√
(ω0/c)2 − λ2

e+i(ω0/c)(ρ
′/γ ). (36)

The integration over λ yields

�(ρ = 0, z, t) = i(ω0/c)�0

∫ (D/2)

0
dρ ′ ρ ′eiω0t

ei(ω0/c)ρ
′/γ√

z2 + ρ ′2 e−i(ω0/c)
√

z2+ρ ′2
. (37)
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This expression is integrated numerically and plotted in figures 9(a) and (b) for normal and
logarithmic scales, respectively. The two figures illustrate the decay patterns corresponding
to (ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 × 105 m−1. The radius of the axicon is chosen
to equal (D/2) = 0.05 m and γ = 28. The fast decay of the two Bessel beams generated
by an axicon starts at the same distance independently of the frequency. The reason for this
frequency independence is that the near-far field limit of the Bessel beam equals (D/2)γ .
In the derivation of this near-far field limit, the waist of the beam (∝ 1/(ω0/c)) offsets the
effect of operating at a higher frequency [16, 53, 61]. Figure 9(b) shows that following the
initial fast decay of the field amplitude, the rate of decay starts slowing down and approaches
asymptotically the 1/z roll-off.

For high-frequency monochromatic illumination, the method of stationary phase can be
used for evaluating the integration in equation (37). The phase of the integrand is equal to

-(ρ ′) = (ρ ′/γ )−
√
z2 + ρ ′2.

The stationary phase condition (∂-(ρ ′)/∂ρ ′) = (1/γ )− (
ρ ′/

√
z2 + ρ ′2) = 0 is applied using

equation (6.5.12) in [64] to obtain

�(ρ = 0, z, t) ≈ i
√

2πγ (ω0/c)�0e−i(ω0/c)

((√
γ 2−1/γ

)
z−ct

)(√
z/(γ 2 − 1)3/4

)
e−i(π/4) (38)

for 0 < z < (D/2)
√
γ 2 − 1.

The intensity of the generated beam increases with z in the near-field range. For the
far-field range, when z > (D/2)

√
γ 2 − 1, the leading-order term is deduced using partial

integration; specifically,

�(ρ = 0, z, t) ≈ �0
(D/2)(

(1/γ )
√
(D/2)2 + z2 − (D/2)

)e−i(ω0/c)

(√
z2+(D/2)2−ct

)
ei(ω0/c)(D/2γ )

(39)

for z > (D/2)
√
γ 2 − 1. One should note that the analysis presented here is valid for both

refractive and diffractive axicons. This is the case because we are dealing with a single
frequency and the circular grating is designed for that particular frequency. The asymptotic
near-field expression given in equation (38) for (ω0/c) = 4 ×106 m−1 is shown as a full curve
in figures 9(a) and (b). These figures display the characteristic

√
z increase in the amplitude

of the pulsed Bessel beam in the near field.

4.2. Pulsed Bessel beam generated by a refractive axicon

For a uniform pulsed illumination of the axicon, we use the same procedure described in the
preceding sections. The initial pulsed illumination is the same as that given in equation (31).
The on-axis amplitude of a pulsed Bessel beam generated using an axicon is, thus, a Fourier
superposition with spectral amplitudes are given by the expression (37); specifically,

�p(ρ = 0, z, t) = i�0

(ω0/c)

∫ (D/2)

0
dρ ′ ρ ′√

z2 + ρ ′2

∫ ∞

0
d(ω/c) (ω/c)2

(
cT /

√
π

)
e−(ω−ω0)

2T 2

×e+iωte−i(ω/c)
√

z2+ρ ′2
ei(ω/c)(ρ ′/γ ). (40)

For large ω0, the integration over (ω/c) can be approximated by an integration having limits
that extend from −∞ → +∞ because contributions from negative ω values are exponentially
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small. Using formula (3.462.8) in [63], we integrate over (ω/c) to obtain the following
amplitude for the on-axis field:

�p(ρ = 0, z, t) ∼= i�0

∫ (D/2)

0
dρ ′ ρ ′√

z2 + ρ ′2 e−(
√

z2+ρ ′2−(ρ ′/γ )−ct)2/4c2T 2

×e−i(ω0/c)(
√

z2+ρ ′2−(ρ ′/γ )−ct)(ω0/c)

×{
1 + 2

(
ω0T − (i/2cT )

(√
z2 + ρ ′2 − (

ρ ′/γ
) − ct

))2}/
2(ω0T )

2. (41)

The leading order of this integration can be evaluated using the stationary phase analysis
applied previously to the case of monochromatic illumination. The stationary phase method
leads to the following expression for the axicon-generated pulsed Bessel beam:

�p(ρ = 0, z, t) ≈ i�0

√
2πγ (ω0/c) e−(z(

√
γ 2−1/γ )−ct)2/4c2T 2

e−i(ω0/c)(z(
√

γ 2−1/γ )−ct)e−i(π/4)

×(√
z/(γ 2− 1)3/4

){
1 + 2

(
ω0T − (i/2cT )

(
z
(√

γ 2 − 1/γ
) − ct

))2}/
2(ω0T )

2

(42)

for 0 < z < (D/2)
√
γ 2 − 1. This pulse has a Gaussian axial width and a centre moving at

a superluminal velocity vp = (γ /
√
γ 2 − 1)c. Similarly to the asymptotic result reached in

equation (39), the leading-order term of the integration (41) is deduced using partial integration,
namely,

�(ρ = 0, z, t) ≈ −�0(D/2)

2(ω0T )2
(
(1/γ )

√
z2 + (D/2)2 − (D/2)

)e−i(ω0/c)(
√

z2+(D/2)2−ct)

×ei(ω0/c)(D/2γ )
{
1 + 2

(
ω0T − (i/2cT )

(√
z2 + (D/2)2 − (D/2γ )− ct

))2}
(43)

for z > (D/2)
√
γ 2 − 1. According to this expression, the peak of the pulse occurs at√

z2 + (D/2)2 − (D/2γ ) = ct and decreases as 1/z. As z � (D/2), the velocity of the
peak of the pulse approaches that of light.

The same results are confirmed by calculating the magnitude of the pulse given in
equation (41) after integrating numerically over ρ ′. The results of such integration are
plotted in figures 10–12. In these figures, we have chosen the radius of the axicon to
equal (D/2) = 0.05 m. In figure 10, we have plotted the pulsed Bessel beam for
(ω0/c) = 4 × 106 m−1 and cT = 0.0006 m. The pulse is plotted at observation times
ct0 = 0.4, 1.2, 2.0 and 2.8 m. Figure 10 shows a distinct propagation at a velocity greater
than c. The positions of the peak of the pulse at different observation points are plotted in
figure 12. At the beginning, the velocity of the peak of the pulse is much larger than the
speed of light. Away from the axicon, the curve in figure 12 levels up, indicating that the
velocity of the pulse asymptotically approaches c as the pulse advances deep into the far-
field range. In figure 11, the same calculations are repeated for (ω0/c) = 1 × 105 m−1

and cT = 0.000 06 m. The positions of the peaks of this pulse are identical to those
associated with that illustrated in figure 10. This is confirmed by comparing the two curves
in figure 12, which show that the observation times of the peaks of pulses in both cases
are equal. Because of the short axial width of the latter pulse, the observability of its
superluminal propagation would be more pronounced. Finally, one should note that the
quantity (zmax − ct0) is positive contrary to the case of the annular slit (cf figures 6 and
7). This might lead one to believe that such pulses can violate special relativity in a global
sense; i.e. that we can generate a pulse that travels faster than a simultaneously generated signal
travelling with velocity c. However, this is not the case because the phase factor employed
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Figure 10. Axial time envelope of a pulsed Bessel beam generated by a refractive axicon having
(D/2) = 0.05 m, γ = 28, (ω0/c) = 4 × 106 m−1 and cT = 0.0006 m. The pulse is plotted at
observation times: (a) ct0 = 0.4 m; (b) ct0 = 1.2 m; (c) ct0 = 2.0 m; and (d) ct0 = 2.8 m.

in equations (35) and (40) to model the action of the axicon is an approximation. Such an
approximation neglects the effect of the thickness of the axicon [26]. Along the propagation
axis, the difference in the optical path length representing the passage through the axicon
equals (D/2)(n − 1) tan ξ = (D/2γ ). For the parameter values adopted in this study, the
passage through the axicon introduces a time delay equal to ctd = 1.786 × 10−3 m. This time
delay, when added to the observation times ct0 causes the quantity (zmax − c(t0 + td)) to be
negative for all positions. This means that the pulsed Bessel beam generated from an axicon
will be always slower than a simultaneously generated pulse travelling at the speed of light.
Consequently, the propagation of a pulsed Bessel beam does not violate special relativity in
a global sense. The superluminal velocity of its peak is a local behaviour that occurs in the
near-field range.
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Figure 11. Same as in figure 10 but the axial time envelope of the pulsed Bessel beam is plotted
for (ω0/c) = 1 × 105 m−1 and cT = 6 × 10−5 m.

4.3. Pulsed Bessel beam generated by a diffractive axicon

A diffractive axicon is a holographic optical element designed for a specific frequency to
produce phase differences that are linearly dependent on ρ ′. In the case of a pulsed illumination
of the axicon, the phase factor associated with the diffractive type is exp{i(ω0/c)(ρ

′/γ )},
instead of the variable-frequency phase exp{i(ω/c)(ρ ′/γ )} used for refractive axicons. Here,
ω0 is the angular frequency, for which the circular grating is designed. In the following
calculations, ω0 is the mean frequency of the Gaussian envelope used in the initial pulsed field



7248 A M Shaarawi and I M Besieris

 

 

 

Figure 12. Positions of the peaks of the pulsed
Bessel beams generated by a refractive axicon
at different observation times. The positions of
the peaks are plotted for the two frequencies
(ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 ×
105 m−1.

given in equation (31). Consequently, the amplitude of the on-axis field equals

�p(ρ = 0, z, t) = i�0

(ω0/c)

∫ (D/2)

0
dρ ′ ρ ′√

z2 + ρ ′2

∫ ∞

0
d(ω/c) (ω/c)2

(
cT /

√
π

)
e−(ω−ω0)

2T 2

×e+iωte−i(ω/c)
√

z2+ρ ′2
ei(ω0/c)(ρ

′/γ ). (44)

Integrating over (ω/c) after extending the limits from −∞ → +∞, we obtain

�p(ρ = 0, z, t) ∼= i�0

∫ (D/2)

0
dρ ′ ρ ′√

z2 + ρ ′2 e−(
√

z2+ρ ′2−ct)2/4c2T 2
ei(ω0/c)(ρ

′/γ )

×e−i(ω0/c)(
√

z2+ρ ′2−ct)(ω0/c)

×{
1 + 2

(
ω0T − (i/2cT )

(√
z2 + ρ ′2 − ct

))2}/
(ω0T )

2. (45)

The leading order of this integration can be evaluated using the stationary phase analysis
applied previously to the case of monochromatic illumination. The stationary phase method
leads to the following expression for the axicon-generated pulsed Bessel beam:

�p(ρ = 0, z, t) ≈ i�0

√
2πγ (ω0/c) e−(z(γ /

√
γ 2−1)−ct)2/4c2T 2

e−i(ω0/c)(z(γ /
√

γ 2−1)−ct)

×ei(ω0/c)(z/
√

γ 2−1)e−i(π/4)
(√

z/(γ 2 − 1)3/4
)

×{
1 + 2

(
ω0T − (i/2cT )(z(γ /

√
γ 2 − 1)− ct)

)2}
/2(ω0T )

2 (46)

for 0 < z < (D/2)
√
γ 2 − 1. This pulse has a Gaussian axial width and a centre moving

at a subluminal velocity vp = (√
γ 2 − 1/γ

)
c. Similarly to the asymptotic result reached in

equation (43), the leading-order term of the integration (45) is deduced using partial integration,
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Figure 13. Axial time envelope of a pulsed Bessel beam generated by a diffractive axicon having
(D/2) = 0.05 m, γ = 28, (ω0/c) = 4 × 106 m−1 and cT = 0.0006 m. The pulse is plotted at
observation times: (a) ct0 = 0.4 m; (b) ct0 = 1.2 m; (c) ct0 = 2.0 m; and (d) ct0 = 2.8 m.

namely,

�(ρ = 0, z, t) ≈ −�0(D/2)

2(ω0T )2
(
(1/γ )

√
z2 + (D/2)2 − (D/2)

)e−i(ω0/c)(
√

z2+(D/2)2−ct)

×ei(ω0/c)(D/2γ )
{
1 + 2

(
ω0T − (i/2cT )

(√
z2 + (D/2)2 − (D/2γ )− ct

))2}
(47)

for z > (D/2)
√
γ 2 − 1. According to this expression, the peak of the pulse occurs at√

z2 + (D/2)2 −(D/2γ ) = ct . This means that the velocity of the peak becomes superluminal
and approaches c as the distance z is increased. We calculate the amplitude of the pulse given in
equation (45) by numerically integrating over ρ ′. The results of such an integration are plotted
in figures 13–15. The size of the axicon is chosen to equal (D/2) = 0.05 m. In figure 13, the
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Figure 14. Same as in figure 13 but the axial time envelope of the pulsed Bessel beam is plotted
for (ω0/c) = 1 × 105 m−1 and cT = 6 × 10−5 m.

pulsed Bessel beam is plotted for (ω0/c) = 4 × 106 m−1 and cT = 0.0006 m and observation
times equal to ct0 = 0.4, 1.2, 2.0 and 2.8 m. Unlike the case of a refractive axicon, the pulse
starts by travelling at a subluminal speed in the near-field range. Once it crosses over the
near-to-far field limit, it acquires a superluminal velocity that asymptotically approaches c as
the pulse advances deep into the far-field range. This picture is confirmed in figure 15, where
the positions of the peak of the pulse are plotted for different observation times. In this figure,
intervals having negative (positive) slopes correspond to subluminal (superluminal) velocities.
The same calculations are repeated for (ω0/c) = 1 × 105 m−1 and cT = 0.000 06 m and the
results are shown in figures 14 and 15. Similarly to the refractive axicon, the peaks of the
shorter pulse are observed at the same times as those of the longer one (cf figure 15). One
should also note that the shorter pulse (having a larger bandwidth) undergoes more dispersion
in the near field as can be seen from figure 14(b).
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Figure 15. Positions of the peaks of the pulsed
Bessel beams generated by a diffractive axicon
at different observation times. The positions of
the peaks are plotted for the two frequencies
(ω0/c) = 4 × 106 m−1 and (ω0/c) = 1 ×
105 m−1.

5. Concluding remarks

We have investigated the behaviour of pulsed Bessel beams generated using various excitation
schemes. Special attention has been given to determining the velocity of the peak of the
propagating pulses. The field generated from an aperture has been calculated using the
Rayleigh–Sommerfeld integral. Other approximate formulae, such as the Fresnel or the
Fraunhofer integrals, have not been used because of their limited validity for specific distances
from the generating aperture. In contradistinction, the Rayleigh–Sommerfeld formula yields
expressions that are valid continuously both in the near- and far-field ranges. The current study
has shown that the velocity of the peak of pulsed Bessel beam depends on the spatio-temporal
profile of the excitation field. Pulsed Bessel beams generated from circular arrays can thus
travel at either subluminal (subsonic) or superluminal (supersonic) speeds. A source excited
using a Bessel beam that is time-limited uniformly over the whole aperture plane produces
subluminal pulsed Bessel beams. Numerical calculations undertaken in subsection 2.2 depict
the subluminal pulse propagation in agreement with the experimental results reported in [8].
Generating a pulse having a superluminally propagating peak requires that the various elements
of the circular array should be driven at different times using independent excitation sequences.
This procedure produces X-shaped LW pulses analogous to the X-wave [2] and the Bessel
X-pulse [3–5]. The same effect may be achieved by using uniform excitation followed by
appropriate time delays at different parts of the aperture. Such delays can be achieved in
practical situations by employing uniform illumination of an annular slit [17–19, 23] or an
axicon [23, 26–33].

For the case of uniform illumination of the annular slit, we have shown that the pulse
is generated at a delayed time. This is the case because a finite time is needed for waves
coming from the annular slit to interfere on the axis of propagation. In the near-field range,
the peak travels at a superluminal velocity. As it travels deeper into the far-field range, the
velocity of the peak of the pulse approaches asymptotically the speed of light. The individual
spectral plane wave components travel at the speed of light, while the peak resulting from their
interference propagates with superluminal velocity. For a pulsed Bessel beam generated using
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a refractive axicon, it has been shown that in the near-field range (i.e. z < (D/2)
√
γ 2 − 1)

the peak of the pulse travels at superluminal velocities and the amplitude of the peak increases
as

√
z. The analysis employed in this investigation, shows that the peak of the pulse travels

at a superluminal velocity even for z > (D/2)
√
γ 2 − 1 as illustrated in figures 10–12. The

velocity of the peak of the pulse, however, approaches c as the pulse travels deeper into the
far-field range. It has also been shown that for a diffractive axicon the velocity of the peak
of the generated pulse is initially subluminal. For z > (D/2)

√
γ 2 − 1, the pulse becomes

superluminal and its velocity approaches asymptotically the speed of light at larger distances.
All numerical results produced in this work indicate that the superluminal velocities

acquired by X-shaped pulses generated by a circular array, an annular slit or an axicon should
be detectable especially when ultrashort pulses are used. The peak of a generated pulse
travels at a superluminal velocity for a finite distance L; beyond this distance the speed of
the pulse approaches asymptotically that of light. Although the examples used for numerical
evaluations haveLvalues of a few metres, one can design sources that can produce superluminal
pulses over longer ranges. All generation schemes, however, share the common feature of
undergoing a ‘delayed generation’ of the pulses followed by superluminal ‘catching up’. At
distance L, a superluminal pulse would catch up with a simultaneously generated pulse that
has been launched without any ‘delayed generation’ and is travelling at the speed of light.
This means that, globally, pulsed Bessel beams would travel at speeds less than that of light.
Therefore, the generation of such pulses does not contradict the theory of special relativity.
However, such pulses travel at superluminal velocities between any two points within the
range L. The observed superluminality is thus a local phenomenon achievable only over a
finite distance from the source and is particularly noticeable when ultrashort pulses are used.
The contingent superluminal local signalling using X-shaped pulses and possible effects on
relativistic causality are discussed in [65].
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